Abstract

This study investigates polyacrylonitile(PAN) fibers stabilized with various doses of electron beam irradiation (EBI) ability to produce carbon fibers. Feasibility was verified by FT-IR, the percent of gel fraction, density, DSC, XRD, and mechanical measurements. FT-IR spectra showed that the intensities of the stretching C≡N bonds decreased at 2,244 cm−1 with increasing EBI dose. This de crease was related to cyclization of nitrile groups during EBI-stabilization. The degree of cyclization was determined from the gel fraction and density tests. The gel content and density of PAN fibers stabilized by EBI increased with an increase in the EBI dose. Thermal properties were characterized by differential scanning calorimetry (DSC) and thermally activated reactions. DSC curves showed that EBI treatment influenced the quantity of released heat and the exothermic position at low temperature over a wide temperature range. The strongest diffraction peak from the PAN precursor fiber arose from the (100) plane; its stabilization index (SI) was evaluated by X-ray diffraction. The X-ray results showed that the peak intensity decreases gradually with increasing EBI dose. In addition, tensile strength decreased the EBI stabilization level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.