Abstract

ABSTRACTRecent developments in forensic science have lead to a proliferation of methods for quantifying the probative value of evidence by constructing a Bayes Factor that allows a decision-maker to select between the prosecution and defense models. Unfortunately, the analytical form of a Bayes Factor is often computationally intractable. A typical approach in statistics uses Monte Carlo integration to numerically approximate the marginal likelihoods composing the Bayes Factor. This article focuses on developing a generally applicable method for characterizing the numerical error associated with Monte Carlo integration techniques used in constructing the Bayes Factor. The derivation of an asymptotic Monte Carlo standard error (MCSE) for the Bayes Factor will be presented and its applicability to quantifying the value of evidence will be explored using a simulation-based example involving a benchmark data set. The simulation will also explore the effect of prior choice on the Bayes Factor approximations and corresponding MCSEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.