Abstract

AbstractIn this study, the initial growth characteristics of a SiGe film realized by ultrahigh-vacuum chemical vapor deposition (UHV CVD) using GeH4 and Si2H6 on high-K gate oxide, ZrO2, has been investigated in the temperature range from 475°C to 550°C. The influence of surface reactions on growth characteristics such as the incubation of growth, roughness of the SiGe layer, and the interface reaction of the SiGe film with ZrO2were studied using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). From our analysis we conclude that ZrO2 reacts with Si and forms zirconium silicide in the temperature range between 500°C and 550°C. The surface roughness of amorphous SiGe layers increase from 0.5nm to 1.5nm by increasing Ge content from 0.1 to 0.3. A further increase of surface roughness is observed from less than 1nm to 5nm as SiGe layer transitions from an amorphous to a poly crystalline layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call