Abstract

Solid bitumen occurs extensively in the paleo-reservoirs of marine sequences in southern China. The fluids in these paleo-reservoirs have usually experienced severe secondary alteration such as biodegradation and/or thermal maturation. The concentrations of extractable organic matter (EOM) in the resulting solid bitumens are too low to satisfy the amount required for instrumental analysis such as GC–MS and GC–IRMS. It is also difficult to get enough biomarkers and n-alkanes by dry pyrolysis or hydrous pyrolysis directly because such solid bitumens are hydrogen poor due to high maturities. Catalytic hydropyrolysis (HyPy) can release much more EOM from solid bitumen at mature to highly over-mature stages than Soxhlet extraction, dry pyrolysis and hydrous pyrolysis. However, whether the biomarkers in hydropyrolysates can be used for bitumen-source or bitumen–bitumen correlations has been questionable. In this study, a soft biodegraded solid bitumen sample of low maturity was thermally altered to various maturities in a closed system. HyPy was then employed to release bound biomarkers and n-alkanes. Our results show that the geochemical parameters for source and maturity based on biomarkers released from these thermally altered bitumen residues by HyPy are insensitive to the degree of thermal alteration. Furthermore, the maturity parameters are indicative of lower maturity than bitumen maturation products at a corresponding temperature. This suggests that biomarker source and maturity parameters, based on the products of HyPy, remain valid for bitumens which have suffered both biodegradation and severe thermal maturation. The distributions of δ13C of n-alkanes in hydropyrolysates are also insensitive to the temperature used for bitumen artificial maturation. Hence, the δ13C values of n-alkanes in hydropyrolysates may also provide useful information in bitumen–bitumen correlation for paleo-reservoir solid bitumens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.