Abstract

Hydrogels bearing a phospholipid polar group, 2-methacryloyloxyethyl phosphorylcholine (MPC), were prepared from two aqueous solutions of polymers, water-soluble poly[MPC-co-methacrylic acid (MA)] (PMA) and poly[MPC-co-n-butyl methacrylate (BMA)] (PMB). The hydrogel, which was formed by physical cross-linking spontaneously without any chemical reactions and/or any physical stimuli, showed a controllable insulin release through a pH change in the medium by changing the hydrogen bonds. In this study, the mechanical strength, erosion of the hydrogel caused by polymer dissociation, and the release of insulin were examined with attention to the following three parameters of the MPC polymer: molecular weight of the polymers, composition of PMA and PMB (PMA/PMB ratio), and polymer concentration inside the hydrogel. The hydrogel with the highest mechanical strength was obtained at a PMA/PMB ratio = 3/7 (v/v, by volume ratio) while the hydrogel with the slowest dissolution was obtained at a ratio of 5/5 (v/v). The release was in good match with the dissolution and followed anomalous transport for all, but the diffusion exponent n changed according to the PMA/PMB ratio. An increase in the polymer concentration inside the hydrogel caused an increase in the mechanical strength of the hydrogel. When the polymer concentration was more than 20 wt.%, the absorption of water under neutral pH condition (pH 6.8) was observed. The release of insulin was suppressed below 10% during the swelling process of the hydrogel under neutral pH condition, while release was accelerated during the erosion process of the hydrogel. The relationship between erosion of the hydrogel and the release of the insulin depended on the erosion process of the hydrogel but differed according to the PMA/PMB ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.