Abstract

The by-products of the circulating fluidized-bed boiler combustion (CFBC) of coal exhibit self-hardening properties due to the calcium silicates generated by the reaction between SiO2 and CaO, and the ettringite generated by the reaction of gypsum and quicklime with activated alumina. These reactions exhibit tendencies similar to that of the hydration of ordinary Portland cement (OPC). In this study, the self-hydration and carbonation reaction mechanisms of CFBC by-products were analyzed. These CFBC by-products comprise a number of compounds, including Fe2O3, free CaO, and CaSO4, in large quantities. The hydration product calcium aluminate (and/or ferrite) of calcium aluminate ferrite and sulfate was confirmed through instrumental analysis. The CFBC by-products attain hardening properties because of the carbonation reaction between calcium aluminate ferrite and CO2. This can be identified as a self-hardening process because it does not require a supply of special ions from the outside. Through this study, it was confirmed that CFBC by-products generate CaCO3 through carbonation, thereby densifying the pores of the hardened body and contributing to the development of compressive strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call