Abstract

We fabricated a new top-gate n-type depletion-mode polycrystalline silicon (poly-Si) thin-film transistor (TFT) employing alternating magnetic-field-enhanced rapid thermal annealing. An n+ amorphous silicon (n+ a-Si) layer was deposited to improve the contact resistance between the active Si and source/drain (S/D) metal. The proposed process was almost compatible with the widely used hydrogenated amorphous silicon (a-Si:H) TFT fabrication process. This new process offers better uniformity when compared to the conventional laser-crystallized poly-Si TFT process, because it involves nonlaser crystallization. The poly-Si TFT exhibited a threshold voltage (VTH) of -7.99 V at a drain bias of 0.1 V, a field-effect mobility of 7.14 cm2/V ldr s, a subthreshold swing (S) of 0.68 V/dec, and an ON/OFF current ratio of 107. The diffused phosphorous ions (P+ ions) in the channel reduced the VTH and increased the S value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call