Abstract

Abstract This paper presents a diagnostic study of the evolution of initial corrections obtained from the key analysis error algorithm that minimizes the short-range (24 h) forecast errors for four specific events poorly forecasted over the eastern part of North America. A potential vorticity (PV) perspective is employed. It is shown that the modification to the low-level structure at the initial time is mainly attributed to the modification of the low-level PV distribution, while changes in the upper-level structure are attributed to the modification of the upper-level PV distribution. The low-level corrections grow mainly through background surface potential temperature advection by the wind corrections attributable to the interior PV corrections. Changes in the diabatic processes and the vertical alignment of low-level PV corrections by differential PV advection also increase the magnitude of the low-level corrections with time. The upper-level corrections grow by advection of background PV from wind corrections. However, the cause of these latter wind corrections responsible for upper-level background PV advection varies from case to case. An investigation of the relative importance of the low-level and of the upper-level initial corrections to produce the final-time corrections also reveals strong variability between cases. Finally, comparison of two cases in which the key analysis errors propagate vertically with two others without significant vertical propagation shows how the relative position of the key analysis errors with respect to the structure of the background flow can influence the evolution of the initial corrections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call