Abstract
In order to improve the combustion performance of a ramjet under low temperature and pressure, a gliding arc plasma actuator was designed based on a typical evaporation flameholder. The discharge characteristics, as well as the activating effect of single-channel and three-channel gliding arc plasma under different carrier gas flow rates, were studied. Results show that with the increase in the carrier gas flow rate, the average duration of the gliding arc discharge becomes shorter, while the average power increases, and the specific input energy decreases. Compared with single-channel discharge, three-channel discharge has higher discharge power and energy injection rate, which makes a bigger actuated space. Through gliding arc plasma, the kerosene is cracked and H2, CH4, C2H2, C2H4, C3H6 and other small molecule components are produced. For three-channel gliding arc discharge, the effective cracking rate and the production rate of each component are higher than those of the single-channel discharge; both of them gradually increase with the increase in the carrier gas flow rate. The experiment results indicate that three-channel gliding arc plasma can effectively widen the ignition boundary and improve the combustion efficiency of ramjet combustion. The ignition pressure boundary is expanded from 60 kPa to 50 kPa under 390 K; the combustion efficiency is increased from 76% to 82%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.