Abstract

In this study, the gas-liquid two-phase mixing process and the microbubbles formation process in a jet flow field has been investigated by using a self-designed on-line measurement system for measuring bubble generation characteristics and the Volume of Fluid (VOF) model in numerical simulation methods for analyzing flow field distribution characteristics. The effect of turbulence intensity on the dynamic size distribution of microbubble has been considered. The characteristics and duration of the three stages during the bubble breaking process, namely, surface oscillation stage, surface tension stage and fracture stage, were analyzed. The results show that the increase of turbulence intensity in jet flow will further promote the imbalance between the external deformation force and the surface tension resisting the deformation of the bubble, and promote the breaking probability of bubble. However, when the bubble breaks to a sufficiently small size, the surface tension against bubble deformation will increase sharply, the surface free energy needed to overcome for bubble breakage is very large, and the breakage probability of bubble will significantly decrease. Compared with the breaking process of bubbles, the increase in turbulence intensity will greatly promote the bubble coalescence process, which will ultimately become the main reason for affecting the bubble size distribution. Moreover, the influence of flow field distribution characteristics on bubble size distribution and average bubble size change is analyzed by using Population Balance Model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call