Abstract

The disulfide-centered hydrogen bonds in the three different model systems of diethyl disulfide⋅⋅⋅H2 O/H2 CO/HCONH2 clusters were characterized by high-resolution Fourier transform microwave spectroscopy and quantum chemical computations. The global minimum energy structures for each cluster are experimentally observed and are characterized by one of the three different S-S⋅⋅⋅H-C/N/O disulfide-centered hydrogen bonds and two O⋅⋅⋅H-C hydrogen bonds. Non-covalent interaction and natural bond orbital analyses further confirm the experimental observations. The symmetry-adapted perturbation theory (SAPT) analysis reveals that electrostatic is dominant in diethyl disulfide⋅⋅⋅H2 O/HCONH2 clusters being consistent with normal hydrogen bonds, whilst dispersion takes over in diethyl disulfide⋅⋅⋅H2 CO cluster. Our study gives accurate structural parameters for the disulfide bond involved non-covalent clusters providing important benchmarking data for the theoretical evaluation of more complex systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call