Abstract

The sediments of the modern Huanghe River subaqueous delta are easily to generate settlement and lead to topography change which is due to fast deposition rate, high void ratio, moisture content and compressibility. The sediment consolidation settlements and its contribution to the topography change in the northern modern Huanghe River subaqueous delta are studied based on drilling data, laboratory experiment results, and water depth measurements of different time. The results show that the final consolidation settlement of drill holes in the study area is between 1.17 and 3.21 m, and mean settlement of unit depth is between 2.30 and 5.30 cm/m based on the one-dimensional consolidation theory and Plaxis numerical model. The final consolidation settlement obtained by Plaxis numerical model is smaller than that obtained by the one-dimensional consolidation theory, and the difference is 3.4%–39.9% between the methods. The contribution of the consolidation settlement to the topographical change is at 20.2%–86.6%, and the study area can be divided into five different regions based on different contribution rates. In the erosion area, the actual erosion depth caused by hydrodynamics is lower than the changes of measured water depth, however, the actual deposition amount caused by hydrodynamics is much larger than the changes of water depth obtained by measured data in the equilibrium and deposition areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.