Abstract
Let Gσ be a weighted oriented graph with skew adjacency matrix S(Gσ). Then Gσ is usually referred as the weighted oriented graph associated to S(Gσ). Denote by ϕ(Gσ;λ) the characteristic polynomial of the weighted oriented graph Gσ, which is defined asϕ(Gσ;λ)=det(λIn-S(Gσ))=∑i=0nai(Gσ)λn-i.In this paper, we begin by interpreting all the coefficients of the characteristic polynomial of an arbitrary real skew symmetric matrix in terms of its associated oriented weighted graph. Then we establish recurrences for the characteristic polynomial and deduce a formula on the matchings polynomial of an arbitrary weighted graph. In addition, some miscellaneous results concerning the number of perfect matchings and the determinant of the skew adjacency matrix of an unweighted oriented graph are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.