Abstract

As the cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs), A-site deficient SrxFe1.5Mo0.5O6−δ (x = 1.9–2.0) (SxFM) materials have been successfully synthesized using the sol–gel combustion method. In the perovskite structure of these oxides, the unit cell varies from pseudocubic to cubic with increasing deficiency. Thermal expansion coefficient of SxFM has also been measured and compared with that of Scandium-stabilized zirconium (ScSZ) electrolyte. X-ray photoelectron spectroscopy (XPS) results indicate that the Sr-deficiency has changed the proportion of Fe2+/Fe3+ and Mo6+/Mo5+ ratios, which directly influences the conductivity of SxFM materials. S1.950FM possesses the largest electrical conductivity and the lowest polarization resistance (Rp) among all the samples. The maximum power densities of a single cell with the S1.950FM cathode reaches 1083 mW cm−2, and the area specific resistance value is 0.17 Ω cm2 at 800 °C. These results indicate that the A-site deficiency could promote the electrochemical performance of SFM materials as cathodes for IT-SOFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.