Abstract

Impaired function of the endoplasmic stress (ER) response causes numerous pathological conditions, including tissue fibrosis. In the present study, we aimed to determine the pathological role of ER stress response systems in myeloproliferative neoplasms (MPNs). We found increased expression of the chaperone protein glucose-regulated protein (GRP) 78, a central regulator of ER stress, in megakaryocytes from primary myelofibrosis or postessential thrombocythemia myelofibrosis patients. GRP78 was overexpressed in JAK2V617F-harboring cell lines; however, inhibitors of ER stress did not affect the expression levels of GRP78. In contrast, ruxolitinib, a well-known inhibitor of JAK2V617F, clearly blocked GRP78 expression in these cells through downregulation of transcription factor 4 (ATF4). Interestingly, GRP78 was secreted from HEL and SET-2 cells into culture media. Coculture of these cells with HS-5 cells, a human bone marrow stroma-derived cell line, induced enhanced expression of lysyl oxidase (LOX), which mediates cross-linking of collagen fibers and induces tissue fibrosis, in HS-5 cells. An anti-GRP78 neutralizing antibody abrogated LOX elevation; in contrast, recombinant GRP78 protein induced LOX protein expression in HS-5 cells. Our observations suggest that the oncogenic protein JAK2V617F induces overexpression and release of GRP78, which may induce a fibrotic phenotype in surrounding bone marrow stromal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.