Abstract

Plasmodium the causative agent of malaria is a member of the phylum Apicomplexa, where all invasive forms have a substrate-dependent motility called gliding, key to malaria transmission. Gliding allows parasite host-cell recognition, binding, cell entry and trespassing the cytoplasm. In this process Plasmodium releases molecules from micronemes and the cell surface that are deposited on trails left behind on the substratum as the parasite progresses. Previously we identified the heat shock protein 70-1 (HSP 70-1) on the surface and micronemes of P. berghei ookinetes, the parasite form that invades the mosquito midgut. To investigate if this protein is shed of from the parasite during invasion, we searched HSP 70-1 in gliding trails deposited on a solid surface by P. berghei ookinetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.