Abstract

Deterministic chaos refers to irregular or chaotic motion that is generated by nonlinear systems. The chaotic behavior is not to quantum-mechanical-like uncertainty. Chaos theory is used to prove that erratic and chaotic fluctuations can indeed arise in completely deterministic models. Chaotic systems exhibit a sensitive dependence on initial conditions. Seemingly insignificant changes in the initial conditions produce large differences in outcomes. The basic aim of this paper is to construct a relatively simple chaotic growth model of the monopoly price that is capable of generating stable equilibria, cycles, or chaos. A key hypothesis of this work is based on the idea that the coefficient μ = f (n - b - d ) plays a crucial role in explaining local stability of the monopoly profit, where, b - the coefficient of the total cost function of the monopoly firm, n - the coefficient of the inverse demand function, d - the Pigovian tax rate.μ

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.