Abstract

In this paper, we develop a method to impart the chaotic nature to a mobile robot. The chaotic mobile robot implies a mobile robot with a controller that ensures chaotic motions. Chaotic motion is characterized by the topological transitivity and the sensitive dependence on initial conditions. Due to the topological transitivity, the chaotic mobile robot is guaranteed to scan the whole connected workspace. For scanning motion, the chaotic robot neither requires the map of the workspace nor plans the global motion. It only requires the measurement of the local normal of the workspace boundary when it comes close to it. We design the controller such that the total dynamics of the mobile robot is represented by the Arnold equation, which is known to show the chaotic behavior of noncompressive perfect fluid. Experimental results and their analysis illustrate the usefulness of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.