Abstract

Chaotic motion of symmetric laminated composite arch with two hinge supports under transverse periodic excitation was investigated. The nonlinear dynamic equations of the arch are changed into the square-order and cubic nonlinear differential dynamic system by Galerkin method, and its homoclinic orbit parameter equations are also acquired. The critical conditions of horseshoe-type chaos are obtained by using Melnikov function. The influence of loading frequency on chaotic region are analysed by numerical calculation. The motion behaviors of system are described through the bifurcation diagrams, the time-history curve, phase portrait and Poincaré map. The results are given as follows. The influence of loading frequency on chaotic region are significant. When the height of arch reach some value, the system can occur horseshoe-type chaos. The system of symmetric laminated composite arch under transverse periodic excitation may occur steady motion and chaotic motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.