Abstract
We consider realistic settings of an artificial market from the viewpoint of a long memory process. With the aim of analyzing the mechanism of stock price change, we construct an artificial stock market composed of multiple agents whose investment strategies are represented by tree-shaped programs. The market is optimized using genetic programming so that the change of its stock price resembles that of a stock market statistically. In order to perform an efficient optimization and analyze agents' behavior easily, we use ADG - automatically defined groups proposed previously. We show experimentally that complex changes in a real market appear in the proposed artificial market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.