Abstract

Helium atoms can migrate easily and aggregate at various crystal defects, such as grain boundaries, which promote the nucleation and growth of helium bubbles, ultimately causing severe radiation damage to nuclear materials. Structure characteristics of grain boundaries with low-angle symmetrical tilt of the [100] axle and their channeling effects on helium bubbles in tungsten were investigated by molecular dynamics simulations. The triaxial variation curves of the helium bubble size in each grain boundary model and the relationship of the helium diffusion coefficient of each grain boundary to their intrinsic crystal structures are analyzed. The results indicate that the helium bubbles grow into one-dimensional nanochannels at the selected grain boundaries, and there is a significant difference in the maximum number of helium bubbles these grain boundaries can accommodate before forming one-dimensional nanochannels. Furthermore, the existence of helium nanochannels along the 〈100〉 edge dislocation line in the low-angle symmetrical tilt grain boundaries is well verified by molecular dynamics simulation of the helium bubble growth and helium diffusion equations at the 〈100〉 edge dislocation line. This suggests that releasing helium outside of the tungsten matrix through the nanochannel structures of low-angle symmetrical tilt grain boundaries may be a potential strategy to address the root causes of bubble nucleation and swelling of tungsten material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call