Abstract

Over the past few years, large-scale genomic studies of patients with myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML) have unveiled recurrent somatic mutations in genes involved in epigenetic regulation (DNMT3A, IDH1/2, TET2, ASXL1, EZH2 and MLL) and the spliceosomal machinery (SF3B1, U2AF1, SRSF2, ZRSR2, SF3A1, PRPF40B, U2AF2, and SF1). The identification of these mutations and their impact on prognostication has led to improvements in risk-stratification strategies and has also provided new potential targets for the treatment of these myeloid malignancies. In this review, we discuss the most recently identified genetic abnormalities described in MDS and AML and appraise the current status quo of the dynamics of acquisition of mutant alleles in the pathogenesis of AML, during the transformation from MDS to AML, and in the context of relapse after conventional chemotherapy. Identification of somatic mutations in AML and MDS suggests new targets for therapeutic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.