Abstract
Abstract A rich literature has identified a number of important drivers of nuclear proliferation. Most of this work, however, treats the determinants of proliferation as constant over the entire nuclear age—the factors leading to proliferation are assumed to be the same in 2010 as they were in 1945. But there are reasons to suspect that the drivers of proliferation have changed over this time: nuclear technology is easier to come by, the global strategic environment has shifted, and the nuclear nonproliferation regime has come into being. To examine changes in the dynamics of nuclear proliferation, I adapt a cross-validation technique frequently used in the machine learning literature. I create a rolling window of training data with which statistical models of proliferation are built, and I then test the predictive power of these models against data from other time periods. The result of this analysis is a temporal map of how the determinants of proliferation have changed over time. My findings suggest that the underlying dynamics of nuclear proliferation have indeed shifted, with important implications both for the literature on nuclear proliferation and for policymakers interested in limiting the future spread of nuclear weapons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.