Abstract

Abstract Arctic snow presence, absence, properties, and water amount are key components of Earth’s changing climate system that incur far-reaching physical and biological ramifications. Recent dataset and modeling developments permit relatively high-resolution (10-km horizontal grid; 3-h time step) pan-Arctic snow estimates for 1979–2009. Using MicroMet and SnowModel in conjunction with land cover, topography, and 30 years of the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis data, a distributed snow-related dataset was created including air temperature, snow precipitation, snow-season timing and length, maximum snow water equivalent (SWE) depth, average snow density, snow sublimation, and rain-on-snow events. Regional variability is a dominant feature of the modeled snow-property trends. Both positive and negative regional trends are distributed throughout the pan-Arctic domain, featuring, for example, spatially distinct areas of increasing and decreasing SWE or snow season length. In spite of strong regional variability, the data clearly show a general snow decrease throughout the Arctic: maximum winter SWE has decreased, snow-cover onset is later, the snow-free date in spring is earlier, and snow-cover duration has decreased. The domain-averaged air temperature trend when snow was on the ground was 0.17°C decade−1 with minimum and maximum regional trends of −0.55° and 0.78°C decade−1, respectively. The trends for total number of snow days in a year averaged −2.49 days decade−1 with minimum and maximum regional trends of −17.21 and 7.19 days decade−1, respectively. The average trend for peak SWE in a snow season was −0.17 cm decade−1 with minimum and maximum regional trends of −2.50 and 5.70 cm decade−1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.