Abstract
1. The aim of this work was to study potential mechanisms participating in postischemic protection of selectively vulnerable CA1 neurons in the hippocampus. Experiments were focused on measuring changes in endogenous antioxidant enzyme activity. 2. Forebrain cerebral ischemia was induced in a rat by four-vessel occlusion. Ten minutes of ischemia induces so-called delayed neuronal death in selectively vulnerable CA1 region 3 days later. After 7 days of reperfusion, 71.6% of neurons succumb to neurodegeneration. When 5 min of ischemia was used as postconditioning, 2 days after 10 min of cerebral ischemia, delayed neuronal death in CA1 was almost completely (89.9%) prevented. 3. Searching for mechanisms of protection, we measured the activity of endogenous antioxidant enzymes. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were measured in the hippocampus, striatum and cortex by spectrophotometric methods after 10 min of ischemia used as the preconditioning. Two days after the preconditioning or the sham operation, second ischemia was induced for 5 min. We observed significant increase of total SOD activity in all studied regions of the brain 5 h after postconditioning (5 min of ischemia). SOD activity decreased to control values after 24 h. 4. In some experiments, we used intraperitoneal injections of norepinephrine (3.1 microM/kg) or 3-nitropropionic acid (20 mg/kg) as postconditioning, instead of ischemia. All three treatments resulted in significant increase of SOD activity, but norepinephrine was the most effective. The same effect as was seen for total SOD activity could be observed for CuZn-SOD as well as Mn-SOD activity. Similarly, considerable increase in the activity of catalase was detected 5 h after postconditioning (5 min of ischemia). It is interesting that the greatest changes were established in selectively vulnerable hippocampus and striatum. As in the case of SOD, the highest levels of CAT activity were induced by norepinephrine, while lower but significant increase in CAT activity was induced by 3-nitropropionic acid.5. Our results suggest that endogenous antioxidants SOD and CAT could play considerable neuroprotective role after postconditioning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.