Abstract
Non-thermal dielectric barrier discharge plasma (DBDP) and four thermal treatments, including baking (BT), high pressure cooking (HPC), radio frequency (RF) and microwave (MW) were applied to modify the structural and physicochemical properties of Cyperus esculentus starch (CES). The results showed that the thermal treatments remarkably disordered the crystalline structures of CES through weakening the double-helix conformation of amylopectin, while DBDP caused much more gentle influence on the starch structures than them. Specifically, MW induced the high-frequency displacement of polar molecules and intensive collisions between starch and water molecules, causing the largest stretching and swelling extents of amylopectin, resulting in the highest pasting and rheological viscosity of CES in four thermal treatments. As DBDP did not favor the aggregation of amylopectin chains, the deaggregated starch chains promoted the hydration effects with water molecules, boosting the final pasting viscosity, apparent rheological viscosity, freeze-thaw stability and digestion velocity of CES. Besides, the gelatinization-retrogradation process in the thermal treatments regulated starch digestion velocity and produced type III resistant starch in CES. Conclusively, the modified physicochemical properties of CES resulted from the altered molecular structures of starch by the applied treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.