Abstract

Objective To observe the center retinal thickness (CRT) and subfoveal choroidal thickness (SFCT) in eyes with central retinal artery occlusion (CRAO) before and after treatment. Methods A total of 34 patients (34 eyes) diagnosed with CRAO by fundus fluorescence angiography (FFA) were retrospectively analyzed. There were 18 males (18 eyes) and 16 females (16 eyes). The average age was (61.42±14.09) years. The mean onset time was (2.64±3.73) days. The mean hospitalization time was (11.92±4.95) days. The mean axial length (AL) was (23.53±2.04) mm. The best-corrected visual acuity (BCVA), slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus color photography, fundus fluorescein angiography, spectral domain optical coherence tomography (OCT) and AL measurement were performed. BCVA was converted to the logarithm of the minimum angle of resolution (logMAR). According to FFA, visual loss and the results of OCT, patients were divided into 3 groups: incomplete CRAO (15 eyes) , subtotal CRAO (8 eyes), total CRAO (11 eyes). SFCT and CRT in affected and the fellow eye were measured by OCT for enhanced deep imaging. Follow up lasted for 1 month after treatment, with an average follow-up of (34.71±6.82) days. The changes of SFCT, CRT, and BCVA before and after treatment were observed. The correlation between BCVA after treatment and pretreatment CRT was also analyzed. Results After 1 month of follow-up, the logMAR BCVA in incomplete group, subtotal group and total group were significantly higher than before treatment (t=3.74, 3.61, 3.26; P=0.004, 0.009, 0.017). Before treatment, the average CRT of the contralateral eyes in the total, subtotal and incomplete group were (215.00±19.85), (224.00±22.79), (214.00±8.21) μm, and the mean SFCT were (264.54±121.71), (266.50±58.17), (261.86±90.95) μm. The average CRT of the affected eyes were (353.18±60.26), (280.14±11.08), (266.63±19.65) μm, and the average SFCT were (233.72±111.35), (237.75±53.30), (259.86±98.14) mm. Compared with the fellow eyes, the average CRT in the 3 groups were thickened, and the difference were statistically significant (t=8.274, 3.694, 11.577; P<0.001, 0.008, <0.001); the average SFCT in the total group was decreased, the difference was statistically significant (t=−2.138, P=0.048). The mean CRT among the 3 groups of eyes was statistically significant (F=12.02, P<0.001). There was no significant difference in the average SFCT (F=0.178, P=0.838). After 1 month follow-up, the mean CRT in the total, subtotal and incomplete group were (231.18±49.28), (219.16±21.34), (217.86±24.98) μm, and the average SFCT were (239.81±109.57), (241.86±42.81), (260.57±91.67) μm. Compared with before treatment, the average CRT in the three groups of eyes were decreased, the difference were statistically significant (t=13.032, 3.711, 4.970; P<0.001, 0.008, 0.003); the difference in mean SFCT were not statistically significant (t=−0.785, −0.202, −0.078; P=0.466, 0.845, 0.940). Correlation analysis showed that BCVA after treatment was positively correlated with pretreatment CRT (odds ratio=0.578, P=0.002). Conclusion CRAO resulted in CRT in the preliminary stage and became thinner after receiving treatments. There exists a positive correlation between visual outcome and CRT before receiving treatments. Key words: central retinal artery occlusion; Retinal thickness; Choroidal thickness; Tomography, optical coherence

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call