Abstract

1. The change in the ability to sustain a load and the change in the series elasticity in the anterior byssal retractor muscle (a.b.r.m.) of Mytilus edulis during isotonic shortening was studied by recording the length changes following step changes in load. 2. When a load of 0.7--0.9 P0 WAs applied after a period of isotonic shortening under a small load (0.05--0.1 P0), the muscle fibres showed continuous isotonic lengthening, indicating a reduction in the ability to sustain a load during isotonic shortening. 3. Following the application of a load of 0.3--0.6 P0 during isotonic shortening under a small load, the fibres exhibited a transient isotonic lengthening before starting to shorten isotonically, indicating some degree of restoration in the load-sustaining ability after the step increase in load. 4. No appreciable reduction in the load-sustaining ability was observed during isotonic shortening under a large load (more than 0.7 P0). 5. The load--extension curves of the series elasticity determined during isotonic shortening were found to be scaled down roughly in proportion to the isotonic load. 6. The stiffness of the muscle fibres during the isotonic shortening approached a certain finite value, when the isotonic load tended to zero. If the stiffness was measured during the development of isometric tension, the stiffness--isometric tension curve extrapolated towards the origin. 7. High-speed cinematography during the step change in load indicated a fairly uniform distribution of the series elasticity along the length of the preparation. 8. These results are discussed in relation to the sliding filament model of muscle contraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call