Abstract

The objective of this study was to investigate the mechanism of hard granule formation and to demonstrate the applicability of X-ray diffraction methods for studying the polymeric pharmaceutical excipients. Using a high-shear mixer, microcrystalline cellulose (MCC) was granulated with water as the granulating liquid. The hardness of the MCC granules increased with granulation time and the amount of water added. The specific surface area measured by the N2 adsorption method was reduced during the process. Crystallite size of cellulose, calculated by Scherrer's equation adapted for wide angle X-ray diffraction method, decreased with granulation time and with increasing amounts of water added. Debye plots for X-ray small scattering patterns suggested that the average magnitude of the continuous solid region in MCC granules became significantly greater, whereas the specific surface area of the MCC granules, calculated from Debye plots, became smaller in comparison with that of intact MCC. These findings suggested that the long-chain structures in MCC were disrupted, resulting in smaller units with shorter chain lengths due to the strong shear force of the impeller. These smaller units then form a network within the granules. Thus, MCC granules are strengthened with longer granulation time and greater amounts of water, resulting in a more intricate network. The change in MCC chain length and physical structure can be experimentally detected using the small-angle X-ray scattering and wide-angle powder X-ray diffraction methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call