Abstract
This paper assesses the challenges of alternative solar systems based on hybrid PVT collectors coupled with an absorption chiller (AbCH, single-stage NH3-H2O) in the food-processing industry, from the technical, economic and environmental points of view. This type of industry is usually characterised by a constant cooling demand throughout the year, hot water demand for production processes and electricity consumption for factory equipment and lighting. To the authors’ knowledge, this work constitutes one of the first studies to address the integration of PVT-water collectors with a single-stage NH3-H2O AbCH for industrial applications. Two alternative PVT-water collectors are analysed, covered and uncovered. A biomass boiler is proposed as an auxiliary heater. To compare the proposed solar solutions, a vegetable and fruit processing and canning factory is considered as a representative case study. Hourly transient simulations considering the real factory demands and real weather data are performed over a year. Two main challenges are found for the solar systems based on the covered PVT collectors, an AbCH and a biomass boiler: the overlapping of the cooling and hot water demands of the food-processing industry, and the high hot water temperatures required. If, alternatively, the current electrical chillers are retained, the system based on uncovered PVT collectors has a reasonable-to-attractive payback time (14.3 years). When the potential environmental benefit is quantified (through carbon pricing), all the proposed solar systems become economically attractive, i.e., with positive total cost savings at the end of the system lifetime. Still, the high cost of PVT collectors, along with the considerably lower price of fuels compared to electricity, hinder the potential of systems that displace fossil fuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.