Abstract

Remote sensing of methane fluxes has been highlighted as one of the measurement goals of the NASA 2017 Earth Science Decadal Survey. Measuring methane from space and airborne platforms with an active (laser) remote sensing instrument presents several technology and measurement challenges that need to be met in order to provide accurate and precise data. The instrument must be able to make continuous measurements day and night, over all seasons and at all latitudes. It must have a high signal-to-noise ratio and must be relatively immune to biases from aerosol/cloud scattering, spectroscopic and meteorological data uncertainties, and other systematic errors. In this paper, we will discuss the technology challenges, options and tradeoffs to measure methane from space and airborne platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.