Abstract
The design of equestrian arenas can be challenged by time constraints and specific restrictions at a venue but are nonetheless a critical element to the success and sustainability of equestrian sport. The equestrian arenas for the 2012 Olympic Games were an example of a temporary arena constructed on a raised platform and supported by struts, a design unprecedented for equestrian activities. This study assessed the developmental stages of the Olympic surfaces from 2011 to the actual event in 2012 and aimed to confirm that accelerations and forces experienced by horses were comparable to those on solid ground. Assessment took place at (1) the Olympic test event;(2) a developmental mock-up arena; and (3) the Olympic venue in 2012. A Clegg impact hammer measured peak vertical deceleration and an Orono Biomechanical Surface Tester quantified peak load and peak loading rate. General Linear Models using the arena's structural features as explanatory variables highlighted surface heterogeneity. Peak vertical deceleration (P < .0001) and peak load (P < .0001) were significantly higher and peak loading rate was significantly lower (P < .0001) following iterative testing and modifications to the arena. Data were comparable with surfaces on solid ground by the final testing at the 2012 Olympic Games. Findings highlighted the importance of testing surfaces throughout their development and demonstrated the impact that surface composition, time elapsed since installation, water management, and type of construction have on surface functional properties, with relevance to future temporary arena initiatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.