Abstract
Tracing sediments back to their catchment sources using biogeochemical and physical fingerprints involves multiple assumptions. One of the most fundamental assumptions is that these fingerprints are consistent during sediment generation, transportation, and deposition processes. Accordingly, the biogeochemical fingerprints used to trace sediment must remain constant, during detachment and redistribution, or they must vary in a predictable and measurable way. One key challenge to this assumption is the sorting effect of particles by size during detachment, mobilization, transportation and deposition processes. Owing to the notable effect of particle size on sediment fingerprints, we believe it is important to review the main approaches used to address the effects of changes in particle size composition on sediment fingerprints. The two main approaches to addressing particle size impacts on fingerprint properties are: fractionation of source and sediment material to a narrow particle size range (e.g. isolation of <10μm or <63μm fractions), and concentration corrections (e.g. normalizing concentrations by parameters such as specific surface area). These approaches are often used in combination. The utility of fractionation and corrections to address particle size effects has received increasing attention and the relative merits of these procedures have been subject to debate. Accordingly, alternative techniques to address particle size effects in sediment fingerprinting studies are being adopted. For example, a tributary tracing technique or edge-of-field samplers may minimize particle size effects on sediment source fingerprints. The interrelationships between particle size and biogeochemical tracer properties suggest that particle size may also contribute to the formation of contrasts in sediment fingerprints between sources. Indeed, there may be a significant opportunity to derive further sediment source information through comprehensively investigating and unravelling the complexity of particle size–biogeochemical interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.