Abstract

BackgroundCardioplegia and reperfusion of the myocardium may be associated with cardiomyocyte apoptosis and subsequent myocardial injury. In order to establish a pharmacological strategy for the prevention of these events, this study aimed to verify the reliability of our human cardiac model and to evaluate the pro-apoptotic properties of the sphingolipid second messenger ceramide and the anti-apoptotic properties of the acid sphingomyelinase inhibitor amitryptiline during simulated cardioplegia and reperfusion ex vivo.MethodsCardiac biopsies were retrieved from the right auricle of patients undergoing elective CABG before induction of cardiopulmonary bypass. Biopsies were exposed to ex vivo conditions of varying periods of cp/rep (30/10, 60/20, 120/40 min). Groups: I (untreated control, n = 10), II (treated control cp/rep, n = 10), III (cp/rep + ceramide, n = 10), IV (cp/rep + amitryptiline, n = 10) and V (cp/rep + ceramide + amitryptiline, n = 10). For detection of apoptosis anti-activated-caspase-3 and PARP-1 cleavage immunostaining were employed.ResultsIn group I the percentage of apoptotic cardiomyocytes was significantly (p < 0.05) low if compared to group II revealing a time-dependent increase. In group III ceramid increased and in group IV amitryptiline inhibited apoptosis significantly (p < 0.05). In contrast in group V, under the influence of ceramide and amitryptiline the induction of apoptosis was partially suppressed.ConclusionCeramid induces and amitryptiline suppresses apoptosis significantly in our ex vivo setting. This finding warrants further studies aiming to evaluate potential beneficial effects of selective inhibition of apoptosis inducing mediators on the suppression of ischemia/reperfusion injury in clinical settings.

Highlights

  • Cardioplegia and reperfusion of the myocardium are essential techniques employed in many cardiac surgical procedures when a temporarily arrested myocardium is required

  • We conducted this study to clarify if another pathway of apoptosis induction in cardiomyocytes exists

  • Our aim was to evaluate during ex vivo simulated cardioplegia and reperfusion the effect of the sphingolipid second messenger ceramide and the anti-apoptotic properties of the sphingomyelinase inhibitor amitryptiline respectively the end-point apoptosis induction and reduction in cardiomyocytes which to our knowledge has not been described in such an experimental setting yet

Read more

Summary

Introduction

Cardioplegia and reperfusion of the myocardium are essential techniques employed in many cardiac surgical procedures when a temporarily arrested myocardium is required. Our present pilot study was performed just as a sequel to our recent work [6,7,8] to further evaluate our presented human cardiac model during simulated cardioplegia and reperfusion ex vivo respectively the end-points feasibility and reliability. Our aim was to evaluate during ex vivo simulated cardioplegia and reperfusion the effect of the sphingolipid second messenger ceramide and the anti-apoptotic properties of the sphingomyelinase inhibitor amitryptiline respectively the end-point apoptosis induction and reduction in cardiomyocytes which to our knowledge has not been described in such an experimental setting yet. In order to establish a pharmacological strategy for the prevention of these events, this study aimed to verify the reliability of our human cardiac model and to evaluate the pro-apoptotic properties of the sphingolipid second messenger ceramide and the anti-apoptotic properties of the acid sphingomyelinase inhibitor amitryptiline during simulated cardioplegia and reperfusion ex vivo

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.