Abstract

In recent years, the requirements on passive safety of cars have grown to high standards, leading to a permanent demand on an increase in simulation accuracy. Additionally, demands on fuel efficiency and CO2 – reduction are confronting the car body designers with the need of substantial weight reduction. Here the increasing use of high and ultrahigh strength steel grades for bodies in white can be identified as major trend. At the same time simulation techniques are urged to predict formability and crashworthiness performance better and better. The present contribution will focus on one of the most urging challenges in sheet metal forming and crashworthiness simulation for high strength steels, namely alternative or enhanced constitutive formulations to predict failure and cracking of the blank and furthermore the inclusion of forming results in crashworthiness finite element models in order to predict material failure in such numerical investigations. In a broader view this simulation process chain may be termed as ’producibility to serviceability’ since the diving force behind forming simulations used to be the question if a certain part can be produced on certain press equipment with a defined number of forming stages from a specific material of given initial thickness. Carrying over the forming results to other simulation disciplines like crashworthiness or NVH, where the serviceability of the designed structure is investigated further, will eventually give more insight into the effects of pre-straining and possible pre-damaging emerging from production processes on the target discipline. The whole topic is rather demanding since nowadays the crashworthiness of bodies in white is assessed to a major extend by finite element simulations without taking the production history into account. In this context, high strength steel qualities are known to be more problematic. The present contribution discusses two possible engineering driven approaches to close the constitutive gap between the forming and crashworthiness world.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.