Abstract

A method is described for choosing experimental parameters in studies of high-energy-density (HED) physics relevant to fusion energy, as well as other applications. An important HED issue for magneto-inertial fusion (MIF) is the interaction of metal pusher materials with megagauss (MG) magnetic fields during liner compression of magnetic flux and fusion fuel. The experimental approach described here is to study a stationary conductor when a pulsed current generates MG fields at the surface, instead of studying the inner surface of a moving liner. This places less demand upon the pulsed power system, and significantly improves diagnostic access. Thus the deceptively simple geometry chosen for this work is that of a z pinch composed of a metal cylinder carrying large current. Consideration of well known stability issues for the z pinch shows that for given peak current and rise time from a particular power supply, there is a minimum radius and thus maximum B field that can be created without disruption of the conductor before peak current. The reasons are reviewed why MG levels of magnetic field, as required for MIF, result in high temperatures and plasma formation at the surface of the metal in response to Ohmic heating. The distinction is noted between the liner regime obtained with cylindrical rods, which have a skin depth small compared to the conductor radius, and the exploding thin-wire regime, which has skin depth larger than the wire radius. A means of diagnostic development is described using a small facility (DPM15) built at the University of Nevada, Reno. It is argued that surface plasma temperature measurements in the 10-eV range are feasible based on the intensity of visible light emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.