Abstract

Previously used mirror technologies are not able to fulfil the requirements of future X-ray telescopes due to challenging requests from the scientific community. Consequently new technical approaches for X-ray mirror production are under development. In Europe the technical baseline for the planned X-ray observatory ATHENA is the radical new approach of silicon pore optics. NASA´s recently launched NuSTAR mission uses segmented mirrors shells made from thin bended glasses, successfully demonstrating the feasibility of the glass forming technology for X-ray mirrors. For risk mitigation also in Europe the hot slumping of thin glasses is being developed as an alternative technology for lightweight X-ray telescopes. The high precision mirror manufacturing requires challenging technical developments; several design trades and trend-setting decisions need to be made and are discussed within this paper. Some new technical and economic aspects of the intended glass mirror serial production are also studied within the recently started interdisciplinary project INTRAAST, an acronym for industry transfer of astronomical mirror technologies. The goal of the project, embedded in a cooperation of the Max-Planck-Institute for extraterrestrial Physics and the University of Applied Sciences Aschaffenburg, is to master the challenge of producing thin mirror shells for future X-ray telescopes. As a first project task the development of low stress coatings for thin glass mirror substrates have been started, the corresponding technical approach and first results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.