Abstract
The present paper deals with the investigation into the cGAS-STING pathway, focusing on the signaling of interferons through mathematical modeling and identifying a significant positive feedback loop regulated by STING for activation of type 1 interferons (IFN-1). Cyclic GMP-AMP synthase (cGAS) is responsible for detecting cytosolic DNA and initiating the STING (stimulator of interferon genes) pathway, which in turn causes the synthesis of pro-inflammatory cytokines and type I interferons. In addition to being crucial for pathogen identification, this route interacts with autophagy, a cellular mechanism that is necessary for immunological homeostasis and pathogen removal. In the context of Leishmania infection, the cGAS-STING signaling axis has come to light as a critical mediator of the crosstalk between innate immunity and autophagy. Further, the protein-protein interaction studies underscored the significance of two distinct domains in mediating interactions with IRF3 and LC3. Importantly, our findings suggest the possibility of manipulating STING concomitantly to regulate IRF3 and LC3 independently. This study remarkably advances our understanding of STING's multifaceted roles, particularly in regulating IFN-1 and autophagy, highlighting its pivotal role as a cross-talk point in leishmaniasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.