Abstract

Various transport phenomena in conjunction with chemical reactions are strongly affected by reformer configurations and the properties of the involved porous catalyst layers. The considered composite duct is relevant for a methane steam reformer and consists of a porous layer for the catalytic chemical reactions, the fuel gas flow duct and the solid plate. In this paper, a fully three-dimensional calculation method is developed to simulate and analyse the reforming reactions of methane, with the purpose of revealing the importance of design and operating parameters. The reformer conditions, such as mass balances associated with the reforming reactions and gas permeation to/from the porous catalyst reforming layer, are applied in the analysis. The results show that the characteristic parameters have significant effects on the transport phenomena and the overall reforming reaction performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call