Abstract
Arithmetical cognition is the result of enculturation. On a personal level of analysis, enculturation is a process of structured cultural learning that leads to the acquisition of evolutionarily recent, socio-culturally shaped arithmetical practices. On a sub-personal level, enculturation is realized by learning driven plasticity and learning driven bodily adaptability, which leads to the emergence of new neural circuitry and bodily action patterns. While learning driven plasticity in the case of arithmetical practices is not consistent with modularist theories of mental architecture, it can be enriched by the theory of neural reuse. According to neural reuse, cerebral regions are reused to contribute to multiple neural circuits in functionally constrained ways throughout ontogeny. By hypothesis, learning driven plasticity is complemented by learning driven bodily adaptability, which suggests that there is an interesting functional relationship between finger gnosis, finger counting, and arithmetical practices. The emerging perspective on enculturated arithmetical cognition will be complemented by considerations on associated developmental and acquired disorders, namely developmental dyscalculia and acquired acalculia. The upshot is that we need to take the cerebral, extra-cerebral bodily, and socio-cultural dimensions of enculturation into account in order to arrive at a better understanding of the phylogenetic and ontogenetic conditions of arithmetical cognition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.