Abstract

The cerebellum participates in motor coordination as well as in numerous cerebral processes, including temporal discrimination. Animals can predict daily timing of food availability, as manifested by food-anticipatory activity under restricted feeding. By studying ex vivo clock gene expression by in situ hybridization and recording in vitro Per1-luciferase bioluminescence, we report that the cerebellum contains a circadian oscillator sensitive to feeding cues (i.e., whose clock gene oscillations are shifted in response to restricted feeding). Food-anticipatory activity was markedly reduced in mice injected intracerebroventricularly with an immunotoxin that depletes Purkinje cells (i.e., OX7-saporin). Mice bearing the hotfoot mutation (i.e., Grid2(ho/ho)) have impaired cerebellar circuitry and mild ataxic phenotype. Grid2(ho/ho) mice fed ad libitum showed regular behavioral rhythms and day-night variations of clock gene expression in the hypothalamus and cerebellum. When challenged with restricted feeding, however, Grid2(ho/ho) mice did not show any food-anticipatory rhythms, nor timed feeding-induced changes in cerebellar clock gene expression. In hypothalamic arcuate and dorsomedial nuclei, however, shifts in Per1 expression in response to restricted feeding were similar in cerebellar mutant and wild-type mice. Furthermore, plasma corticosterone and metabolites before mealtime did not differ between cerebellar mutant and wild-type mice. Together, these data define a role for the cerebellum in the circadian timing network and indicate that the cerebellar oscillator is required for anticipation of mealtime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call