Abstract
Context. A longstanding challenge for understanding classical Cepheids is the Cepheid mass discrepancy, where theoretical mass estimates using stellar evolution and stellar pulsation calculations have been found to differ by approximately 10 - 20%. Aims. We study the role of pulsation-driven mass loss during the Cepheid stage of evolution as a possible solution to this mass discrepancy. Methods. We computed stellar evolution models with a Cepheid mass-loss prescription and various amounts of convective core overshooting. The contribution of mass loss towards the mass discrepancy is determined using these models, Results. Pulsation-driven mass loss is found to trap Cepheid evolution on the instability strip, allowing them to lose about 5 - 10% of their total mass when moderate convective core overshooting, an amount consistent with observations of other stars, is included in the stellar models. Conclusions. We find that the combination of moderate convective core overshooting and pulsation-driven mass loss can solve the Cepheid mass discrepancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.