Abstract

Pericentrin, a critical centrosome component first identified in mouse, recruits factors required for assembly of the mitotic spindle apparatus. A similar yet larger human protein named kendrin was recently identified, but its relationship to pericentrin was not clear. Extensive sequence homology between the mouse chromosome 10 region encoding pericentrin and the human chromosome 21 region encoding kendrin indicates that these proteins are encoded by syntenic loci. However, comparison of the published mouse pericentrin cDNA sequence to mouse genomic DNA sequences revealed two important differences: the stop codon present in the published mouse pericentrin cDNA is not found in the mouse genomic sequence, and the 3′ end of the published mouse pericentrin cDNA is a fragment from a different mouse chromosome. To resolve these discrepancies, we sequenced a mouse expressed sequence tag (EST) that corresponds to the 3′ end for a 7.1-kb mouse pericentrin RNA encoded on chromosome 10. Extensive northern blot analysis revealed that the pericentrin gene displays a complex expression pattern in both mouse and human: a 10-kb kendrin transcript is found in most tissues, whereas smaller transcripts are detected in a limited subset of tissues. These analyses demonstrate that pericentrin and kendrin are encoded by one gene, correct the previously published pericentrin cDNA sequence, and describe the complex expression pattern for a gene important for centrosome function in normal and transformed cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.