Abstract
This paper defines a new type of matrix (which will be called a centro-invertible matrix) with the property that the inverse can be found by simply rotating all the elements of the matrix through 180 degrees about the mid-point of the matrix. Centro-invertible matrices have been demonstrated in a previous paper to arise in the analysis of a particular algorithm used for the generation of uniformly-distributed pseudo-random numbers.An involutory matrix is one for which the square of the matrix is equal to the identity. It is shown that there is a one-to-one correspondence between the centro-invertible matrices and the involutory matrices. When working in modular arithmetic this result allows all possible k by k centro-invertible matrices with integer entries modulo M to be enumerated by drawing on existing theoretical results for involutory matrices.Consider the k by k matrices over the integers modulo M. If M takes any specified finite integer value greater than or equal to two then there are only a finite number of such matrices and it is valid to consider the likelihood of such a matrix arising by chance. It is possible to derive both exact expressions and order-of-magnitude estimates for the number of k by k centro-invertible matrices that exist over the integers modulo M. It is shown that order (√N) of the N=M(k2) different k by k matrices modulo M are centro-invertible, so that the proportion of these matrices that are centro-invertible is order (1/√N).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.