Abstract

A new approximate method is presented for the rapid calculation of rotationally inelastic molecular collision cross sections. The method is called the centrifugally decoupled exponential distorted wave (CDEDW) approximation and involves the combination of two well known approximations. The first approximation is the neglect of the off-diagonal coupling terms which arise from the orbital angular momentum operator in the coupled differential equations in the body-fixed axis system. The second approximation is to treat the remaining coupling terms, which arise from the interaction potential, using a unitary perturbation approximation. The CDEDW method is applied to the calculation of total and partial rotationally inelastic cross sections in the ArN 2 system, and detailed comparisons are made with exact and several other types of approximate calculations. Agreement with exact calculations is good and often comparable with the coupled states and p-helicity decoupled approximations. The CDEDW method requires a similar amount of computational effort to the infinite order sudden (IOS) approximation, and we show that for the present system the CDEDW method gives more reliable results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call