Abstract

Submarine canyons have been the subject of intense studies in recent years because of their close link to deepwater systems. The Central Canyon is a large unusual submarine canyon in the northwestern margin of the South China Sea, has a total length of about 425 km and is oriented sub-parallel to the continental slope. Using integrated 2D/3D seismic, well log, core, and biostratigraphy data, the current study documents the stratigraphic framework, internal architecture, depositional processes, and controlling factors of the segment of the Central Canyon located in the Qiongdongnan Basin. The integrated analysis shows that the canyon fill consists of four 3 rd-order sequences, SQ4, SQ3, SQ2, and SQ1. Each of them is bounded by regionally important erosional surfaces (3 rd-order sequence boundaries). Within each 3 rd-order sequence there is maximum regressive surface separating a regressive systems tract in the lower part and a transgressive systems tract in the upper part. Nine facies are identified and are further grouped into five depositional units, DU1 through DU5. The canyon evolved through four cut-and-fill stages, with a change from predominantly axial cut-and-fill to primarily side cut-and-fill. Axial cut-and-fill dominated during the first stage, and the slope-subparallel paleo Xisha Trough was intensely eroded by large-scale axial gravity flows. During the second cut-and-fill stage, the Central Canyon experienced both axial and side cut-and-fill. The third stage was dominated by side cut-and-fill. The canyon was eroded and fed by slope channels that transported sandy sediments from the shelf to the north during regression, and was covered by side-derived muddy MTCs during transgression. The last stage was also dominated by side cut-and-fill. The canyon, however, was filled predominantly by side-derived muddy MTCs. Evolution and depositional processes in the Central Canyon were likely controlled by slope-subparallel negative-relief induced by paleo-seafloor morphology, structural inversion of the Red River Fault and the slope-subparallel basement faults. Additionally, Coriolis force, sea-level fluctuations, high sedimentation rate, and rapid progradation of the slope also controlled and influenced the depositional processes, and internal architectures of the canyon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call