Abstract

Pro-inflammatory cytokines are crucial mediators of beta-cell destruction in type 1 diabetes mellitus (T1DM). The involvement of ferroptosis as a form of oxidative non-apoptotic cell death in T1DM pathogenesis has not been elucidated so far. Moreover, the role of glutathione peroxidase 4 (GPx4) as an antioxidative enzyme and a major regulator of ferroptosis remains elusive. Assessment of GPx4 expression in different pancreatic islet cell types revealed a predominant expression in beta-cells. Silencing of GPx4 by RNA interference and exposure to tert-butyl hydroperoxide (tert-BHP) caused ferroptosis in rat pancreatic beta-cells as evidenced by non-apoptotic cell death in association with increased lipid peroxidation, disturbed ATP synthesis, reduced GSH content, and GPx4 degradation. GPx4 overexpression as well as the ferroptosis inhibitor ferrostatin-1 effectively attenuated beta-cell death induced by tert-BHP. Notably, beta-cell toxic cytokines did not induce ferroptosis although beta-cells underwent cell death. Inhibition of iNOS by Nω-nitro-L-arginine however led to a massive lipid peroxidation upon exposure to pro-inflammatory cytokines. Hence, nitric oxide produced during pro-inflammatory cytokine action prevents the induction of ferroptosis, thereby favouring apoptosis as a primary cell death mechanism. The extraordinarily high abundance of the phospholipid hydroperoxidase GPx4 in beta-cells in contrast to the very low expression in other islet cell types points to a susceptibility of beta-cells to the accumulation of toxic lipid peroxides. Overall, these data strongly suggest that GPx4 is indispensable for beta-cell function under physiological conditions. On the other hand, our results exclude an involvement of ferroptosis as an alternative beta-cell death mode under pro-inflammatory cytokine attack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.