Abstract

Geodynamic properties and evolution of the lithosphere on the north margin of the Tibetan Plateau are recently hot topics to geoscientists in the world. Have the northern plates been subducting underneath the Plateau? It is still an unsolved problem. One of the keys to solving this problem is to understand the genetic processes of Cenozoic magmas on the north margin of the Tibetan Plateau. However, there is no enough evidence supporting the subduction model. In contrast, a series of evidence indicates that collision-induced huge shearing faults and large-scale crust shortening played a main role in lithosphere motion on the north margin of the Tibetan Plateau. The mantle-derived igneous rocks strictly distribute at the intersections of large strike-slip faults on the north margin of the Plateau. Generation of magmas may be related to local extensional condition induced by strike-slipping faults, which lead to lithosphere gravitational instability and collapse, as well as upwelling of the deep hot material. Heat induced by shearing and carried by upwelling hot material may cause partial melting on H2O-bearing mantle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call