Abstract

The Cenomanian/Turonian Boundary Event (CTBE) at Wunstorf, north-west Germany, has been analysed palynologically by high resolution sampling to reconstruct changes in relative sea-level and water mass character within photic zone waters. Based on changes in the ratio of terrigenous sporomorphs to marine palynomorphs (t/m index), the distribution of the organic-walled algal taxa as well as of selected dinocyst taxa and groups the section can largely be subdivided into pre-“plenus-bed” and post-“plenus-bed” intervals, reflecting different stages of third-order relative sea-level cycles and/or changes in water mass influence in the photic zone. Accordingly, the pre-“plenus-bed” interval is placed in a transgressive systems tract starting at the “facies change” event ( C. guerangeri/ M. geslinianum ammonite Zone boundary) with the maximum flooding surface at the top of the “ Chondrites II” bed (top of R. cushmani Biozone). A highstand systems tract is suggested from the base of the “plenus-bed” up the base of the “fish-shale” event. Within the “fish-shale” event interval, a transgressive systems tract is suggested to start at the base of the thin, grey-green marly interbed. The Cenomanian/Turonian boundary proper, as defined by the first occurrence of Mytiloides spp., as well as the lowermost Turonian are located within the initial phase of a transgressive systems tract. With respect to water mass characteristics within photic-zone waters, the pre-“plenus-bed” interval is predominantly characterized by warm water masses that changed gradually towards the deposition of the “ Chondrites II” bed, where a strong influence of cool and/or salinity-reduced waters is indicated by various palynological proxies. Within the post-“plenus-bed” interval a mixture and/or alternation of warmer and cooler waters is indicated, with the warmer water influence increasing gradually towards and within the Lower Turonian stage. The increased proportions of prasinophytes within the “ Chondrites II” bed and parts of the “fish-shale” interval may indicate availability of reduced nitrogen chemospecies, especially ammonium, within photic-zone waters as a function of a vertical expansion of the oceanic O 2-minimum zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.