Abstract

The function of PrP(C), the cellular prion protein (PrP), is still unknown. Like other glycophosphatidylinositol-anchored proteins, PrP resides on Triton-insoluble, cholesterol-rich membranous microdomains, termed rafts. We have recently shown that the activity and subcellular localization of the neuronal isoform of nitric oxide synthase (nNOS) are impaired in adult PrP(0/0) mice as well as in scrapie-infected mice. In this study, we sought to determine whether PrP and nNOS are part of the same functional complex and, if so, to identify additional components of such a complex. To this aim, we looked for proteins that coimmunoprecipitated with PrP in the presence of detergents either that completely dissociate rafts, to identify stronger interactions, or that preserve the raft structure, to identify weaker interactions. Using this detergent-dependent immunoprecipitation protocol we found that PrP interacts strongly with dystroglycan, a transmembrane protein that is the core of the dystrophin-glycoprotein complex (DGC). Additional results suggest that PrP also interacts with additional members of the DGC, including nNOS. PrP coprecipitated only with established presynaptic proteins, consistent with recent findings suggesting that PrP is a presynaptic protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.